Application Exercise 1

To prove $\triangle DBC \cong \triangle ABC$ which information would be *most* helpful?

(A)	∠BDC = ∠BAC
(B)	DB ≅ AB

(C)
$$\angle BCD = \angle BCA$$

(D)
$$\overline{DC} \cong \overline{AC}$$

How are they proved to be congruent? (SSS, ASA, SAS or RHS)

Method	Statement	Reason
S	BC ≅ BC	The triangles share a side
	△DBC ≅△ABC	

Application Exercise 2

INTRO: Why would a builder use SSS to make identical wooden trusses for a roof?

A designer wants to make a wall pattern out of congruent triangles. Which method would be the most useful for cutting out the shapes?

(A)	SSS
(B)	SAS
(C)	ASA
(D)	RHS

What tools would they need for the chosen method?