Application Exercise 1

To prove $\triangle \mathrm{DBC} \cong \triangle \mathrm{ABC}$ which information would be most helpful?
(A) $\angle \mathrm{BDC}=\angle \mathrm{BAC}$
(B) $\quad \overline{\mathrm{DB}} \cong \overline{\mathrm{AB}}$
(C) $\angle \mathrm{BCD}=\angle \mathrm{BCA}$
(D) $\overline{\mathrm{DC}} \cong \overline{\mathrm{AC}}$

How are they proved to be congruent? (SSS, ASA, SAS or RHS)

Method	Statement	Reason
S	$\overline{B C} \cong \overline{B C}$	The triangles share a side
	$\triangle D B C \cong \triangle A B C$	

Application Exercise 2

INTRO: Why would a builder use SSS to make identical wooden trusses for a roof?

A designer wants to make a wall pattern out of congruent triangles. Which method would be the most useful for cutting out the shapes?

(A)	SSS
(B)	SAS
(C)	ASA
(D)	RHS

What tools would they need for the chosen method?

