\qquad

Two key applications of algebra are to find unknown quantities by solving equations and to make expressions to model relationships or make predictions. Working with and simplifying equations is a useful skill for both but they can be represented in different ways.

Application Exercise 1

Backtracking is a method that shows the operations in order and works backwards to solve the equation:

The equation for converting ${ }^{\circ}$ Celsius to ${ }^{\circ}$ Fahrenheit is: $F=\frac{9 C}{5}+32$
e.g. to convert $100^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$:

...or $68^{\circ} \mathrm{F}$ backwards to ${ }^{\circ} \mathrm{C}$:

Which of these temperatures is easiest to convert by backtracking?
(A) $37^{\circ} \mathrm{C}$
(B) $1313^{\circ} \mathrm{C}$
(C) $-40^{\circ} \mathrm{F}$
(D) $356^{\circ} \mathrm{F}$

Application Exercise 2

A 'mathemagical' trick may be performed like so:
"Think of a number.
Multiply it by six.
Subtract four.
Halve it.
Add three.
What was your number?
You started with..."

Written algebraically:

$$
y=\frac{6 x-4}{2}+3
$$

where x is the starting number and y is the final number. Or:
$x{ }^{\times 6} \square{ }^{-4} \square \div 2 \square^{+3} \square$

To perform the trick, the mathemagician needs to work backwards but the equation may be simplified:

$$
\begin{aligned}
y & =\frac{{ }^{3} 6 x-2 x}{12}+3 \\
& =3 x-2+3 \\
& =3 x+1
\end{aligned}
$$

So the mathemagician only needs to subtract one and divide by three to get the starting number. Try performing this trick now.

Which of these equations would make the best trick?
(A) $y=\frac{4(x-1+5)}{2}$
(B) $x=\frac{2 x+x}{3}$
(C) $y=\frac{2(3(x+2)-6)+42}{6}$
(D) $4=\frac{3(2 x+8)}{6}-x$

Minimum evidence: How would the trick be performed?

Application Exercise 3

Balancing solves the equation by applying the same operation to both sides of the equal sign. This can be represented by scales or a see-saw.

Access online interactives: ggbm, at/PJttmZNY
Move the numbers until you have an x on one side and integers on the other, while keeping the equation balanced; to solve for x .

Which of these is easiest to solve by balancing?
(A)
(B)

(C)
(D)

Application Exercise 4

The following are four representations of the same equation.

Which representation is the most helpful?
(A) Three more than half of four less than six times a number is seven.
(B) $\quad \frac{6 x-4}{2}+3=7$
(C) $\mathrm{x}^{\times 6} \square^{-4} \square^{\div 2} \square{ }^{+3} \square$
(D)

Minimum evidence: Try solving the equation.
What are the advantages of each? Why does part D show $3 x$?

