Team names: _

Two key applications of algebra are to find unknown quantities by *solving equations* and to make expressions to *model relationships* or make predictions. Working with and simplifying equations is a useful skill for both but they can be represented in different ways.

Application Exercise 1

Backtracking is a method that shows the operations in order and works backwards to solve the equation:

The equation for converting °Celsius to °Fahrenheit is: $F = \frac{9C}{5} + 32$

This can be represented as: $C^{\times 9}$ e.g. to convert 100°C to °F: $100^{\times 9}$ $900^{\div 5}$ 18

...or 68°F backwards to °C:

Which of these temperatures is easiest to convert by backtracking? (A) $37^{\circ}C$ (B) $13\frac{1}{3}^{\circ}C$ (C) $-40^{\circ}F$ (D) $356^{\circ}F$

Application Exercise 2

A 'mathemagical' trick may be performed like so:

"Think of a number.	Written algebraically:
Multiply it by six.	$y = \frac{6x - 4}{4} + 3$
Subtract four.	2
Halve it.	where <i>x</i> is the starting number
Add three.	and y is the final number. Or:
What was your number?	\mathbf{X} × 6 -4 ÷ 2 + 3 \mathbf{y}
You started with"	

To perform the trick, the mathemagician needs to work backwards but the equation may be simplified:

$$y = \frac{{}^{3}\not{6}x - {}^{2}\not{4}}{{}^{1}\not{2}} + 3$$

= $3x - 2 + 3$
= $3x + 1$
$$x = 3x + 1$$

So the mathemagician only needs to subtract one and divide by three to get the starting number. *Try performing this trick now.*

Which of these equations would make the best trick?
(A)
$$y = \frac{4(x-1+5)}{2}$$
 (B) $x = \frac{2x+x}{3}$
(C) $y = \frac{2(3(x+2)-6)+42}{6}$ (D) $4 = \frac{3(2x+8)}{6} - x$

Minimum evidence: How would the trick be performed?

Application Exercise 3

Balancing solves the equation by applying the same operation to both sides of the equal sign. This can be represented by scales or a see-saw.

Access online interactives: <u>ggbm_at/PJttmZNY</u>

Move the numbers until you have an x on one side and integers on the other, while keeping the equation balanced; to solve for x.

Application Exercise 4

The following are four representations of the same equation.

Minimum evidence: Try solving the equation.

What are the advantages of each? Why does part D show 3x?